Morphisms to Brauer–severi Varieties, with Applications to Del Pezzo Surfaces

نویسنده

  • CHRISTIAN LIEDTKE
چکیده

We classify morphisms from proper varieties to Brauer– Severi varieties, which generalizes the classical correspondence between morphisms to projective space and globally generated invertible sheaves. As an application, we study del Pezzo surfaces of large degree with a view towards Brauer–Severi varieties, and recover classical results on rational points, the Hasse principle, and weak approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Brauer-manin Obstruction on Del Pezzo Surfaces of Degree 2

This paper explores the computation of the Brauer-Manin obstruction on Del Pezzo surfaces of degree 2, with examples coming from the class of “semi-diagonal” Del Pezzo surfaces of degree 2. It is conjectured that the failure of the Hasse principle for a broad class of varieties, including Del Pezzo surfaces, can always be explained by a nontrivial Brauer-Manin obstruction. We provide computatio...

متن کامل

The arithmetic of certain del Pezzo surfaces and K3 surfaces

We construct del Pezzo surfaces of degree 4 violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of K3 surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.

متن کامل

On the Arithmetic of Del Pezzo Surfaces of Degree

— We study the arithmetic of certain Del Pezzo surfaces of degree 2. We produce examples of Brauer-Manin obstruction to the Hasse principle, coming from 2and 4-torsion elements in the Brauer group.

متن کامل

Arithmetic of Del Pezzo Surfaces of Degree 4 and Vertical Brauer Groups

We show that Brauer classes of a locally solvable degree 4 del Pezzo surface X are vertical for some projection away from a plane g : X 99K P, i.e., that every Brauer class is obtained by pullback from an element of Brk(P). As a consequence, we prove that a Brauer class obstructs the existence of a k-rational point if and only if all k-fibers of g fail to be locally solvable, or in other words,...

متن کامل

Conic bundles and Clifford algebras

We discuss natural connections between three objects: quadratic forms with values in line bundles, conic bundles and quaternion orders. We use the even Clifford algebra, and the Brauer-Severi Variety, and other constructions to give natural bijections between these objects under appropriate hypothesis. We then restrict to a surface base and we express the second Chern class of the order in term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016